What's up in the Linux IPv6 Stack

Hideaki YOSHIFUJI

Keio University
USAGI/WIDE Project

http://www.linux-ipv6.org/materials/200801-LCA2008/

About Me

- Hideaki YOSHIFUJI
 - Core member of USAGI Project
 - Co-maintainer of Networking [IPv4/IPv6] area
 - Assistant professor, Keio University
 - Networking, especially IPv6, "ubiquitous" computing
 - Linux, open source etc...

Table of Contents

- Introduction
- Supported Features Highlights
- Quality of the Stack
- Upcoming Features and Future Directions
- Conclusion

Table of Contents

- Introduction
- Supported Features Highlights
- Quality of the Stack
- Upcoming Features and Future Directions
- Conclusion

Overview

- Linux IPv6 Stack
 - Kernel, libraries (glibc/uclibc) and tool (iproute2, iputils etc.)
- Kernel part was merged in 1996 (by Pedro Roque)
 - 11 years old
 - One of the earliest stack integrated in standard distribution

Overview (cont'ed)

- USAGI Project founded in 2000
 - Universal Playground for IPv6
 - To promote development of Linux IPv6 stack
 - Enhancement of quality of implementation
 - Core
 - Development missing major practical features
 - Netfilter, IPsec, Mobile IPv6
 - Collaboration with KAME Project and TAHI Project
 - http://www.linux-ipv6.org

About This Talk

- USAGI Project is 7 years old
- This talk aims to...
 - overview highlights of Linux IPv6 stack
 - Features: core, Netfilter, IPsec, Mobile IPv6 and transition mechanisms
 - Quality

and

- discuss missing pieces and future directions

Table of Contents

- Introduction
- Supported Features Highlights
- Quality of the Stack
- Upcoming Features and Future Directions
- Conclusion

Supported Features - Highlights

- Core
- Netfilter
- IPsec
- Mobile IPv6
- Transition Mechanisms

Supported Features - Highlights

- Core
- Netfilter
- IPsec
- Mobile IPv6
- Transition Mechanisms

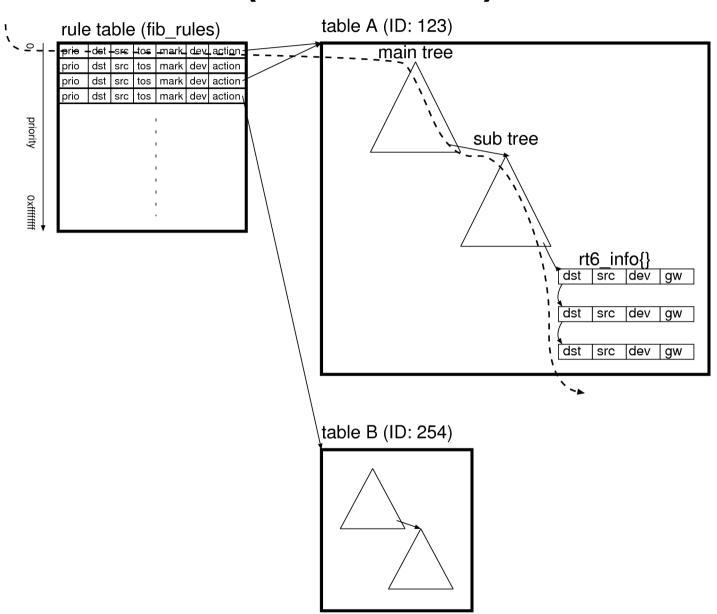
IPv6 Core

- IPv6 [RFC2460]
 - Deprecation of Routing Header Type 0 [RFC5095]
 - To protect from DoS attack
 - ping6 r1 r2 r1 r2 dest
- ICMPv6 [RFC4007]
- Neighbor Discovery [RFC4861]
- MLDv1 [RFC2710], MLDv2 [RFC3810]

IPv6 Core (cont'ed): Address Configuration (1)

- Stateless address auto-configuration [RFC4862]
 - Advertisements are sent from daemon
 - radvd, maintained by Pekka Savola (litech.org)
 - quagga
 - Optimistic DAD [RFC4429]
 - Allow to use a likely-unique address before DAD has been completed
 - ND option notification through netlink
 - For RDNSS [RFC5006]

IPv6 Core (cont'ed): Address Configuration (2)


- Stateful address configuration
 - DHCPv6 [RFC3315]
 - wide-dhcpv6
 - http://sourceforge.net/projects/wide-dhcpv6/
 - dhcpv6
 - https://hosted.fedoraproject.org/dhcpv6/
 - Dibbler
 - http://klub.com.pl/dhcpv6/

IPv6 Core (cont'ed): Address and Route selection:

- Policy routing: "fib_rule" subsystem
- Default Router Preference and More-Specific Routes [RFC4191]
 - Radvd also supports
- Default Address Selection [RFC3484]
 - Default extended: ULA etc.
 - 2.6.25 or later: configurable labels
 - ip addrlabel subcommand
 - glibc 2.5 or later (preferably 2.x or later)

IPv6 Core (cont'ed):

- Built on top of fib_rules infrastructure
- Configura ble via "ip rule" subcommand

IPv6 Core (cont'ed): Policy Routing vs Address Selection

- A policy may depend on source address.
- Source address selection is decided after routing decision (especially interface decision), if upper layer has not specified one.
- FIB_RULE_FIND_SADDR flag
 - Ignore the source address in the rule and find a best route.
 - Decide source address and check if it is okay for the rule used.

IPv6 Core (cont'ed): Management

- Statistics [RFC4293,...]
 - Per-interface statistics (for IPv6)
 - Net-snmp: patches available
- ICMP Node Information Queries [RFC4620]
 - Server: implemented in a daemon: "ninfod"
 - Client: implemented in ping6 utility
 - usagi-tools / iputils (not yet)

IPv6 Core (cont'ed): Tunnels

- Tunnels (will be discussed later)
 - "sit" (IPv6 in IPv4)
 - "ip6tnl" (ip6_tunnel): IPv{4,6} in IPv6
 - managed by iproute2 tool (tunnel subcommand)

IPv6 Core (cont'ed): Socket APIs

- Basic Socket API [RFC3493]
- Advanced Socket API [RFC2292,3542]

IPv6 Core (cont'ed): Basic Socket API

- Discussion about bind(2) and packet delivery semantics
- Question
 - Is it okay to allow a socket to bind on a port which bound by another socket?
 - To which socket should we deliver a packet if we have multiple sockets on the same port?
 - IPv4 vs IPv4 (specific vs any)
 - IPv4 vs IPv6 (specific vs any, any vs any)
 - IPv6 vs IPv6 (specific vs any)

IPv6 Core (cont'ed): Basic Socket API (cont'ed)

- Co-existence of IPv4 and IPv6 socket on the same port is not allowed by default.
 - Port space is shared between IPv4 and IPv6.
 - With IPV6_V6ONLY socket option set, port space is partially split.
- On some systems, port space is shared but automatically allows IPv4 socket to bind on the same port.
- On other systems, port space is split.

IPv6 Core (cont'ed): Advanced Socket API

- Advanced Socket API [RFC2292,3542]
 - 3542 options have different semantics
 - IPV6_HOPOPTS (2292)
 - IPV6_HOPOPTS and IPV6_RECVHOPOPTS (3542)
 - 2292 options renamed
 - IPV6 2292HOPOPTS

IPv6 Core (cont'ed): Advanced Socket API Example

To receive hop-by-hop options:

Otherwise, you will suck...

Supported Features - Highlights

- Core
- Netfilter
- IPsec
- Mobile IPv6
- Transition Mechanisms

Netfilter

- nf_conntrack subsystem
 - General framework for connection tracking
 - for stateful filtering and NAT
 - Superseded ip_conntrack for IPv4
- ip_tables / ip6_tables abstraction layer (x_tables)
- Extension module API (for IPv4 and IPv6)
 - Got easier to add new IPv6 matches / targets
 - More 14 modules newly supports IPv6 (1.4.0)

Netfilter (cont'ed)

- Enhancements
 - Fragment handling
 - Elimination of skb_linearize()
 - Introduced a single method to find a specific header (ipv6 find hdr())

Supported Features - Highlights

- Core
- Netfilter
- IPsec
- Mobile IPv6
- Transition Mechanisms

IPsec: Features

- 2.6 supports IPsec
 - "XFRM" / stackable destination architecture
 - Supports both IPv4 and IPv6
 - Many crypto algorithms (cryptoapi)
 - Inter-family Ipsec
 - Helps IPv6 deployment
 - BEET (Bound End-to-End Tunnel) mode
- Many methods for key exchange available
- Mobile IPv6 support

IPsec: Missing pieces

- ESPv3
- AHv2
- Extended sequence number
- PFP flag

IPsec: Key Exchange

IKEv1

- Racoon (ipsec-tools)
- Pluto (strongSwan/Openswan)
- Racoon2 (Racoon2 Project)
- IKEv2
 - OpenIKEv2 (OpenIKEv2 Project)
 - Racoon2 (Racoon2 Project)
 - Charon (strongSwan)
 - Ikev2 (IKEv2 Project)

IPsec: Key Exchange (cont'ed)

- KINK
 - Racoon2 (Racoon2 Project)
- Basic key exchange features are likely supported by those IKE applications.

Supported Features - Highlights

- Core
- Netfilter
- IPsec
- Mobile IPv6
- Transition Mechanisms

Mobile IPv6

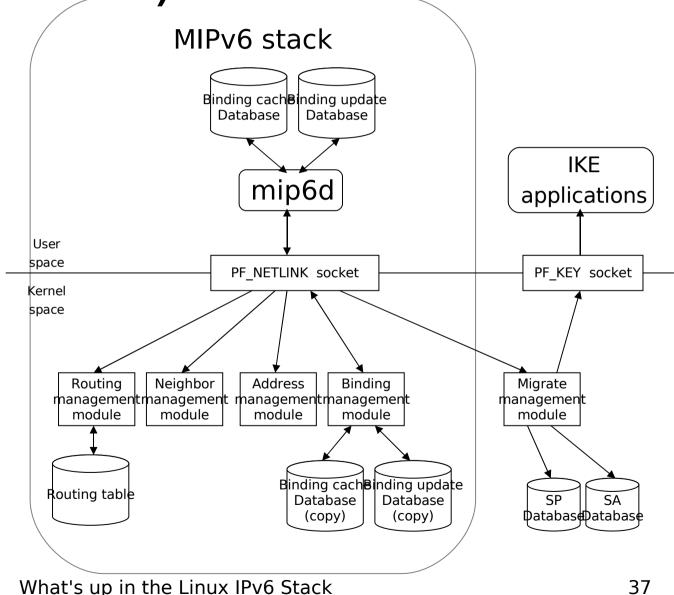
- Mobility support for IPv6 [RFC3775,...]
 - MIPL (Mobile IPv6 for Linux) 2
- draft-sugimoto-mip6-pfkey-migrate
 - Interface between Mobile IPv6 subsystem and IPsec/IKE subsystem
 - MIGRATE
 - Packet extension

Mobile IPv6 (cont'ed): MIPL2

- Jointly developed by Helsinki University of Technology (HUT) and USAGI Project
 - Kernel + Daemon
 - Kernel: packet processing
 - Daemon: signaling processing
 - Avoiding patchy and intrusive implementation
 - Kernel changes required is relatively small

Mobile IPv6 (cont'ed): UMIP (USAGI-Patched MIPL2)

- Enhancements / patches for MIPL2 release to support latest kernel and features
 - Mobile IPv6 (RFC3775)
 - MIGRATE (to use with IPsec; next slide)
 - Several improvements
- Most of changes are ready in main-line kernel.
- http://www.linux-ipv6.org/memo/mipv6/


Mobile IPv6 with IPsec

- draft-sugimoto-mip6-pfkey-migrate
 - Interface between Mobile IPv6 subsystem and IPsec/IKE subsystem
 - MIGRATE
 - 2.6.21 or later
 - Patches for Racoon (IKEv1) and Racoon2 (IKEv2) available
 - Packet extension
 - implementation on Linux cannot be straightforward...

Mobile IPv6: UMIP (MIPL2) Architecture

Copyright (C)2008 USAGI/WIDE Project. All Rights Reserved.

- Mobility functions are maintained by a daemon (mip6d).
- PF NETLINK is used for API
- MIGRATE (through PF KEY) is used to update endpoint address of IPsec tunnel when MN moves.

Supported Features - Highlights

- Core
- Netfilter
- IPsec
- Mobile IPv6
- Transition Mechanisms

Transition Mechanisms

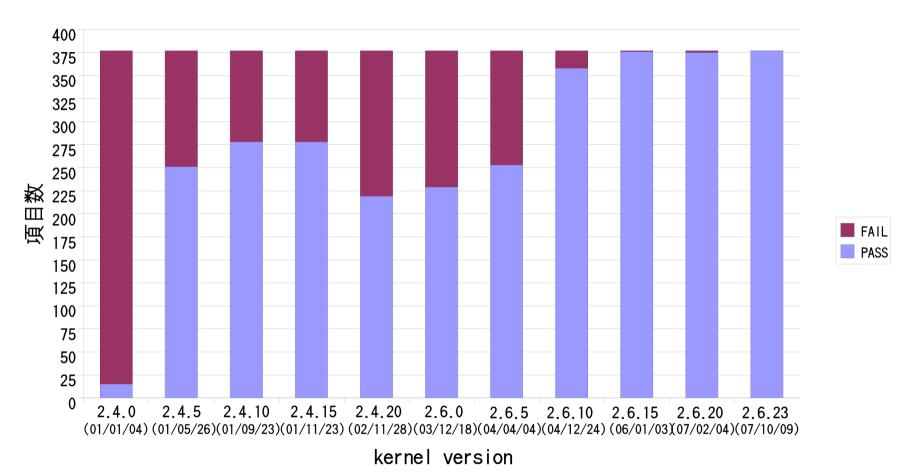
- Basic tunnels
 - 6-in-4 tunnel (sit)
 - 4-in-6 tunnel (ip6_tunnel)
- Inter-family IPsec tunnel
 - 6-in-4 / 4-in-6

Transition Mechanisms (cont'ed)

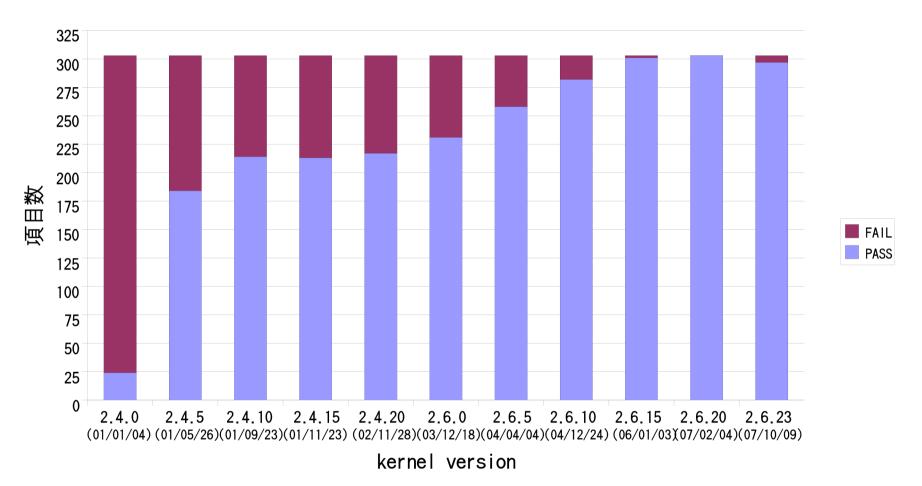
- Teredo (Tunneling IPv6 over UDP through NATs) [RFC4380]
 - Miredo (by Rémi Denis-Courmont)
- ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) [RFC4214]
 - 2.6.24 or later, by Fred L. Templin
 - with daemon's help (still under development)

Table of Contents

- Introduction
- Supported Features Highlights
- Quality of the Stack
- Upcoming Features and Future Directions
- Conclusion


Quality of the Stack

- Quality measurement
 - TAHI Conformance Test
 - IPv6 Ready Logo (http://www.ipv6ready.org)
 - Several sets got certified
 - 2.6.11-rc2 (with USAGI radvd (sV6READYP1-20050121_20050124) for Router)
 - Phase-1: Host
 - Phase-2: Router
 - -2.6.15
 - Phase-2: Core(Host), IPsec(End-Node)
 - -2.6.20 + radvd-1.0
 - Phase-2: Core(Router), IPsec(Security Gateway)


Quality of the Stack (cont'ed): Automatic Test System

- USAGI Testlab
 - http://testlab.linux-ipv6.org
- Daily automatic test system to find regressions
 - Basic tool: TAHI Conformance Test
 - IPv6 Core: Host, Router
 - IPsec: End-Node, Security-Gateway
 - Mobile IPv6: CN, HA, MN
 - Target: every *-git kernels

Quality of the Stack (cont'ed) Host

Quality of the Stack (cont'ed) Router

Recent FAILs are due to RH0 deprecation.

IPv6 Multicast Forwarding

- Linux box as a multicast (PIM-SM SSM) router
 - Original work by Mickael Hoerdt
 - Imported into my tree and rebased
 - 2.6.24-dev
 - With several issues fixed
- Target: 2.6.26
- Further optimization is also planned.

Table of Contents

- Introduction
- Supported Features Highlights
- Quality of the Stack
- Upcoming Features and Future Directions
- Conclusion

Missing Pieces and Others

- rp_filter
 - Check for reverse-path routing
- "inet6peer" infrastructure
 - Randomized fragment-id
 - SYN Cookies
- HC (64bit) counters on 32bit systems
- Some of advanced API
- Several IPsec things

Missing Pieces and Others: in the Wild

- HIP (Host Identity Protocol)
 - HIPL: HIP for Linux (by HIIT (Helsinki Institute for Information Technology) and HUT (Helsinki University of Technology))
 - OpenHIP (or aka Boeing HIP)
- XCAST (Explicit Multicast) [RFC5058]
 - "2.0" is under development
 - Built in user space?

Future Directions

- To make IPv4 and IPv6 cleaner
 - IPv6 module still cannot be unloaded.
- To consolidate more things between IPv4 and IPv6
 - We have more things to share.
 - Split up IP-generic code from net/ipv4
 - maybe net/inet

Table of Contents

- Introduction
- Supported Features Highlights
- Quality of the Stack
- Upcoming Features and Future Directions
- Conclusion

The Rabbit Will Finally...

- The USAGI Project consortium is planned to be concluded in March 2008.
 - Its mission has been achieved.
 - Enough for practical use
 - Getting more eyes
- We still continue development and deployment of IPv6.
 - We would shift our focus to more advanced topics.

Conclusion

- Linux IPv6 stack has a lot of good, practical features, plus more great things will come soon.
- USAGI Project will be concluded in this March, in order to shift our focus on more advanced research and development items. Maintenance and development will be continued.

Thank you