IPv6 Stack Overview -Linux Is IPv6 Ready-

Linux Networking [IPv4/IPv6] Co-maintainer USAGI/WIDE Project Co-Chair Keio University

Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>

IPv6 Stack Overview -Linux Is IPv6 Ready-

IPv6 -Internet Protocol version 6-

- Standardized by IETF (1994)
 - Scalability, performance, extentability, privacy, security
- Supported by various network devices and softwares
 - Commercial services by xSP available
 - Practical stage as the standard for connecting <u>"everything"</u>
- Linux
 - Pedro Roque implementation in 2.1 (1996)
 - EXPERIMENTAL
 - "useless" because of quality
 - Unstable
 - Interoperability issues
 - API, Neight Discovery, Stateless Address Autoconfiguration
 - Missing pieces
 - IPsec, Mobile IPv6, packet filter

IPv6 Stack Overview -Linux Is IPv6 Ready-

Quality Test for Linux 2.2.15

- By the TAHI IPv6 Conformance Test Suite
- Far less fair results
 - Stateless Address Configuration
 - Neighbor Discovery

IPv6 Stack Overview -Linux Is IPv6 Ready-

IPv6 Core

- Issues
 - Incorrect state transition of neighbor cache
 - Inaccurate or lazy lifetime management
 - Insufficient test of incoming packet
- Solutions
 - Rearrangement of dependency, mutual exclusion etc.
 - Introduction of common procedures
 - ->Improvement of maintenance

IPv6 Core (cont'ed) New Functions (selected)

- Privacy Extensions
 - Periodical formation of pseudo-random interface identifier
 - Important in terms of security
- Router Selection
 - Preference (Hi/Med/Low)
 - Route Information
 - Router Reachability Probing
- Node Information Query
 - Node information Query/Reply
 - Daemon in user space
 - Implementation in kernel at the early stage

IPv6 Stack Overview -Linux Is IPv6 Ready-

IPsec

- XFRM appeared after FreeS/WAN / IABG and USAGI
 - By David S. Miller, Alexey N. Kuznetsov
 - IPv6 support by Kunihiro Ishiguro and USAGI (Kazunori Miyazawa, Mitsuru Kanda and Hideaki Yoshifuji)
- Features
 - IPv4/IPv6 unified framework
 - Cryptoapi
 - Pluggable algorithms
 - XFRM (Transform) processing engine
 - Abstraction by flowi and agressive use of cache
 - Stackable Destination
 - Dual Interface
 - Netlink and PF KEYv2 (with KAME extensions)
 - Racoon / Racoon2 / Pluto

- High Quality IPv6 Stack Overview -Linux Is IPv6 Ready-

IPsec (cont'ed)

- Challenges
 - Cross-protocol Tunneling
 - IPv4/IPv6 / IPv6/IPv4
 - AES-128-XCBC-96
 - coming soon
 - Extended Sequence Number
 - 64bit
 - BEET mode

Packet Filter

- Development and Maintenance mainly by Netfilter Project
 - Only fundermental IPv6 packet filter was available
- USAGI Commitment
 - 2.6.15: nf_conntrack
 - Network protocol independent framework
 - 2.6.16-: state module
 - Filter by the state of "connection" (w/ iptables 1.3.4-)
 - Participation in Netfilter Project core team
 - Kozakai (2005-)
- Challenges
 - IPv4 NAT
 - More efficient packet filter system

Mobile IPv6

- Technology to maintain constant address after movement, using IPv6 features
- Linux Implementation
 - MIPL (Mobile IPv6 for Linux)
 - Go-Core Project in HUT(Helsinki University of Technology)
 - USAGI implementation
 - MIPL-based
 - Supporting Latest specifications
 - IPsec friendly
 - More stable
 - Issues
 - Everything in kernel...too many/big changes

IPv6 Stack Overview -Linux Is IPv6 Ready-

Mobile IPv6 (cont'ed)

- MIPL2
 - Cooperation between Go-Core Project (Helsinki University of Technology) and USAGI Project
 - Allocation of the roles in kernel and space daemon
 - Kernel: packet treatment
 - XFRM framework
 - Daemon: signaling, movement detection
 - Aimed at high specification conformity
 - Using TAHI test suite, IPv6 Ready Logo Self Test
 - Cooperative to IPsec and key exchange (IKE)
 - Standardization (migrate)
 - 2.0.1 release
 - Main-line merge in preparation/progress
 - Rearrangement and functional separation

Automatic Test System Background

- Linux is growing day by day
 - Basically...:-p
- It occasionally include bugs
 - Revert or fix?
 - Fix!
- Important are early finding and early treatment
- Test tool utilization
 - Tests are performed on problem report and occasionally
 - A lot of work and time
 - Setup, compile, test, analysis, release
 - Frequent tests needed

Automatic Test System Components and Tools

- Components
 - TN (Test Node)
 - NUT (Node Under Test)
 - 2 (two) back-to-back links
 - Parallel test can be performed by 1 (one) Test Node using several NUTs
- Tools (selected)
 - Grub
 - Setup scripts
 - Switch setups (init scripts and configuration files) by kernel parameter
 - Allow several setups on one kernel

IPv6 Stack Overview -Linux Is IPv6 Ready-

Automatic Test System Workflow

- Flow Chart
 - Waiting
 - Not only released version but rc and git versions targeted
 - Building
 - Oldconfig
 - Test
 - Specify an appropriate mode and setup, boot, and perform test
 - Host / Router
 - Analysis
 - Abstract of the different information between the key version
- Data Collection
 - Source, binary, test results, executed logs, etc.
 - Public via HTTP at http://testlab.linux-ipv6.org

IPv6 Stack Overview -Linux Is IPv6 Ready-

Automatic Test System Flow Chart

IPv6 Stack Overview -Linux Is IPv6 Ready-

Automatic Test System Perform Tests

- IPv6 Ready Logo Phase-1 Self-Test
 - Host
 - Router
- IPv6 Ready Logo Phase-2 Self-Test
 - Host, IPsec End-node
 - Router, IPsec Security-gateway
 - Mobile IPv6 MN/CN/HA (planned)
- TAHI Conformance Test
 - IPsec end-node (selected)
 - IPsec security-gateway (selected)
- Total period of time over 24 hours...

Automatic Test System Effects and Future Challenges

- Free from daily tests
- Efficient finding and identification of problems
 - Tremendous improvement has beed accomplished corresponding to the test frequencies, even though manual operations
- Further challenges
 - Development of more easily accessible interface
 - Automatic finding and identification
 - Automatic alert
 - git-bisect
 - False-positive / sporadic phenomena
 - Visualization

Linux Is IPv6 Ready

- Certification of IPv6 Ready Logo
 - 2.6.11-rc2: Phase-1 (Host, Router)
 - 2.6.15: Phase-2 (Host + IPsec End-node)
- No longer EXPERIMENTAL
 - 2.6.12-rc1
- Mobile IPv6 will be merged soon
 - 2.6.18-19: multiple tables / policy routing
 - 2.6.19-20
- Various possibility in the IPv6 world
 - HIP, SHIM6, XCAST, ...
- Further Challenges
 - To establish user-friendly system for IPv6
 - To promote documents and know-how

IPv6 Stack Overview -Linux Is IPv6 Ready-